《湿地公约》第十四届缔约方大会11月5日至13日在中国武汉和瑞士日内瓦同步举办,是中国首次承办这一国际盛会。自1992年加入《湿地公约》以来,中国的湿地保护经历了摸清家底夯实基础、抢救性保护、全面保护三个阶段,中国湿地保护已经进入高质量发展阶段,并形成了湿地保护的“中国模式”。
30年来,中国在湿地保护方面取得了哪些成就?向世界分享了哪些“中国智慧”和“中国方案”?在全球湿地协同保护中,中国又将如何展现大国担当?中新社“东西问”就此专访北京林业大学生态与自然保护学院教授张明祥。
现将采访实录摘要如下:
中新社记者:什么是湿地,湿地保护对于地球生态有怎样的意义?
张明祥:今年6月1日起实施的《中华人民共和国湿地保护法》明确,湿地是指具有显著生态功能的自然或者人工的、常年或者季节性积水地带、水域,包括低潮时水深不超过六米的海域,但是水田以及用于养殖的人工的水域和滩涂除外。
航拍苏州虎丘湿地公园。泱波 摄湿地与森林、海洋一起并称为地球三大生态系统,具有涵养水源、净化水质、调节气候、维护生物多样性等多种生态功能。人类择水而居,文明因水而兴,足以说明湿地对人类生产、生活的重要性。
被誉为“地球之肾”的湿地,是淡水资源的主要来源。据统计,中国可利用淡水资源总量的96%都存在于湿地。从这个角度来讲,湿地的重要性更是毋庸置疑。不仅如此,占全球陆地面积6%—8.6%之间的湿地,储存了全球大约40%的已知物种,因此湿地也被称为“物种基因库”“基因超市”。
此外,湿地还是地球上最重要的碳库之一,在减缓全球气候变化方面的作用非常明显。以泥炭地为例,它只占地球陆地面积的3%,却存储了30%的陆地碳,是森林碳储量的2倍。如果湿地受到破坏,就会从“碳汇”变成排放二氧化碳的“碳源”,加速全球气候变化。
江苏省盐城市东台市条子泥滩涂景区内的麋鹿。近年来,东台市生态环境持续改善,麋鹿种群和鸟类数量逐年增加,成为各种动物的理想栖息地。张连华 摄中新社记者:中国的湿地分布呈现什么特征?
张明祥:中国幅员辽阔,造就了丰富的湿地类型,从寒温带到热带,从平原到高原,几乎涵盖《湿地公约》所有湿地类型,也孕育了多姿多彩的湿地生物。比如,滨海湿地分布在东部沿海,沼泽湿地主要分布在东北地区、青藏高原,河流、湖泊湿地主要分布在长江及淮河中下游、黄河及海河下游等水资源比较丰富的地区。
位于西藏拉萨市北郊的拉鲁湿地国家级自然保护区,总面积超过12平方公里,被誉为“拉萨之肺”。何蓬磊 摄目前,中国湿地面积达5635万公顷,居亚洲第一位、世界第四位,以占全球4%的湿地,承载着世界五分之一人口对湿地的主要需求。
中国湿地还是世界水鸟的重要繁殖地、越冬地和候鸟迁徙的停歇地,途经中国的候鸟迁飞路线达4条。如新疆巴音布鲁克湿地是天鹅的重要繁殖地,江苏盐城沿海滩涂是世界上最大的丹顶鹤越冬地,江西鄱阳湖是世界上最大的白鹤越冬地,在此越冬的白鹤占全世界总数的95%以上。
一群野生丹顶鹤在江苏盐城国家级珍禽自然保护区芦苇丛上空飞过。李根 摄根据第二次全国湿地资源调查统计,中国湿地高等植物约200科692属2315种。全世界雁鸭类有168种,中国湿地就有54种,约占32%。全世界鹤类有15种,中国就有9种,占60%。
总体来说,由于中国人口众多,人均湿地面积仅占全球人均水平的五分之一左右,所以湿地资源还是比较稀缺的。
中新社记者:从1992年加入《湿地公约》至今,中国在湿地保护方面做了哪些努力,取得了哪些成就?
张明祥:最直观的,中国公众对湿地的保护意识有了大幅提高,对湿地的概念更了解,对其重要性认识也更深刻。现在,大家不仅对湿地耳熟能详,并有了保护意识。建设各类湿地公园,能让民众真实感受到生态保护带来的幸福感和获得感。
江苏省盐城市,中国黄海湿地博物馆内展出的动物标本栩栩如生,吸引民众参观。泱波 摄其次,湿地保护在中国已上升至国家法律层面,管理体系更加完善。《中华人民共和国湿地保护法》今年6月1日正式实施,从逻辑性、全面性、系统性来说,填补了中国生态系统立法的空白,确立了湿地保护的基本原则,在全球层面来看也是最完善的立法。另外,全国28个省(区、市)先后出台了湿地保护条例和办法,共同构建起湿地保护管理顶层设计的“四梁八柱”。
重庆市梁平区双桂湖国家湿地公园,景色美丽。刘辉 摄中国湿地保护体系由湿地类型国家公园、湿地自然保护区、湿地公园三部分构成。现有国际重要湿地64处,国家重要湿地29处,建立了901处国家湿地公园。30年间,中国完成了三次全国湿地资源调查,并依此在各地建立湿地调查监测野外台站、实时监控和信息管理平台,为湿地保护提供了强有力的科技支撑。近十年来,中国累计实施湿地保护修复项目3400多个,新增和修复湿地80多万公顷。
世界上真正在全国范围内进行湿地基础调查的国家很少,中国在这方面的成绩有目共睹。近日,中国印发了《全国湿地保护规划(2022—2030年)》,明确了未来一段时间中国保护湿地的目标和蓝图。我相信,有了国家的重视,湿地保护的明天会更加美好。
中国履行《湿地公约》30周年成就展在武汉举行。张畅 摄中新社记者:中国在全球湿地保护工作中贡献了哪些“中国智慧”,为其他缔约方提供了可借鉴的“中国方案”?
张明祥:中国加入《湿地公约》后,认真履行公约义务,积极参与全球生态治理,不断提升湿地保护管理水平。《湿地公约》认证的43个“国际湿地城市”中,中国13个城市入选,是全球入选城市数量最多的国家,直观反映了中国在全球湿地保护方面的贡献。
鄱阳湖畔的江西省南昌市高新区鲤鱼洲五星白鹤保护小区,成群候鸟翩翩飞舞。鲍赣生 摄再如,全世界仅有两国为湿地立法,中国是其中之一。《中华人民共和国湿地保护法》从生态系统角度进行立法,突出了湿地在生态文明建设、以及在维护生物多样性方面发挥的重要作用,对提升国际话语权、彰显大国责任担当具有重要意义。
目前,我们已经把《中华人民共和国湿地保护法》翻译成英文,也将通过此次大会,向世界各国代表及湿地保护领域的专家,宣介中国湿地保护立法成果,给其他国家提供一个范本,希望可以引领全世界对湿地保护的立法行动。
2022年11月5日,《湿地公约》第十四届缔约方大会在武汉东湖国际会议中心开幕。邹浩 摄此外,中国的湿地保护,并不是只看那些野外的、天然的、大面积的湿地,而是梳理资源、分析状况、针对性提出保护方案。而且很注重处理人与湿地的关系,湿地公园就是中国独创的一种把湿地保护与利用相结合的一种形式,在国际社会也引起很大反响。
2018年,中国起草的《小微湿地的保护和管理决议草案》在《湿地公约》第十三届缔约方大会上顺利通过。小微湿地独特的生态功能,得到国际社会更为广泛的关注和认同。
同时,中国还与多个国际机构和组织在湿地野生动物保护、湿地调查、湿地自然保护区建设以及人才培训等方面进行了合作。通过承办一些援外培训班,向广大发展中国家传输中国湿地保护经验,中国湿地保护修复先进技术和成功模式。中国还提出要加强候鸟栖息地的保护,有效保护了途经中国的4条候鸟迁飞路线,为候鸟提供安全舒适的家园。
在山东省青岛市胶州湾海洋公园河套段滨海湿地,成群的红嘴巨鸥和灰斑鸻、宾鹬等候鸟在水面翔集。王海滨 摄中新社记者:全球湿地协同保护对于构建人类命运共同体有何意义?
张明祥:湿地与人类的生活息息相关,自古以来,人类就懂得择水而居的生存方式。“桑基鱼塘”体现了中国古人在湿地保护与合理利用上的智慧。
浙江省湖州市南浔区和孚镇,星罗棋布的千年桑基鱼塘系统与盛开的桑树相映成趣。陆志鹏 摄尽管当前湿地保护、修复已成为全球共识,但是由于气候变化和人类不合理的开发利用等原因,全球湿地都面临面积萎缩、功能退化和生物多样性下降等问题,给各国经济和社会发展带来不利影响,加强湿地保护与管理已刻不容缓。
“珍爱湿地,人与自然和谐共生”是《湿地公约》第十四届缔约方大会的主题,同时也寄托了人们对未来美好生活的愿景。珍爱湿地,是全人类共同的责任,通过地区和国家层面的行动及国际合作,能有效推动湿地保护与合理利用,为实现全球可持续发展作出贡献。(完)
受访专家简介:
北京林业大学生态与自然保护学院教授张明祥张明祥,北京林业大学生态与自然保护学院教授、国家林草局自然保护区研究中心秘书长。1994年毕业于山东师范大学自然地理专业;1997毕业于中国科学院长春地理研究所湿地生态专业,获硕士学位;2003年毕业于中国科学院东北地理与农业生态研究所环境科学专业,获博士学位。中国较早从事湿地保护的专家学者之一,国家湿地保护法起草专家团队负责人,从事湿地保护与管理的科学研究和生产实践等相关工作。
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?****** 相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。 你或身边人正在用的某些药物,很有可能就来自他们的贡献。 2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。 一、夏普莱斯:两次获得诺贝尔化学奖 2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。 今年,他第二次获奖的「点击化学」,同样与药物合成有关。 1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。 过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。 虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。 虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。 有机催化是一个复杂的过程,涉及到诸多的步骤。 任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。 不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。 为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。 点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。 点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。 夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。 大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。 大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。 大自然的一些催化过程,人类几乎是不可能完成的。 一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢? 大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。 在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。 其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。 诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]: 夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。 他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。 「点击化学」的工作,建立在严格的实验标准上: 反应必须是模块化,应用范围广泛 具有非常高的产量 仅生成无害的副产品 反应有很强的立体选择性 反应条件简单(理想情况下,应该对氧气和水不敏感) 原料和试剂易于获得 不使用溶剂或在良性溶剂中进行(最好是水),且容易移除 可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定 反应需高热力学驱动力(>84kJ/mol) 符合原子经济 夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。 他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。 二、梅尔达尔:筛选可用药物 夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。 他就是莫滕·梅尔达尔。 梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。 为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。 他日积月累地不断筛选,意图筛选出可用的药物。 在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。 三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。 2002年,梅尔达尔发表了相关论文。 夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。 三、贝尔托齐西:把点击化学运用在人体内 不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。 虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。 诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。 她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。 这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。 卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。 20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。 然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。 当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。 后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。 由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。 经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。 巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。 虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。 就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。 她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。 大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。 2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。 贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。 在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。 目前该药物正在晚期癌症病人身上进行临床试验。 不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。 「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江) 参考 https://www.nobelprize.org/prizes/chemistry/2001/press-release/ Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116. Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613. (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |